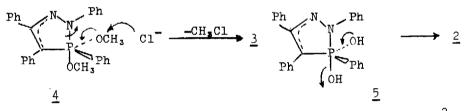

Tetrahedron Letters No. 22, pp 1891 - 1892, 1976. Pergamon Press. Printed in Great Britain.

RING-CLEAVAGE BY METHANOL OF A DIAZAPHOSPHOLENE-CYCLOADDUCT. SEPARATION OF FOUR DIASTEREOMERIC 6-PHENYLHYDRAZONE-PHOSPHINATES

Graziano Baccolini[#] and Paolo E. Todesco

Istituto di Chimica Organica, Viale Risorgimento nº 4 - 40136 Bologna (Italy) (Received in UK 7 April 1976; accepted for publication 16 April 1976)

In previous work¹ we reported that phenylazostilbene forms cycloadduct $\underline{1}$ with phenyldichlorophosphine and that hydrolysis of $\underline{1}$ gives an isomeric mixture of the five-membered cyclic diazaphospholene oxides 2 without ring-opening.


It is known that water and methanol have generally similar behaviour^{2,3,4} in reacting with small cyclic phosphorus compounds and that methanolysis of related oxaphospholenes⁵ occurs without ring-opening.

We have found that 1 undergoes exclusively ring-opening when treated with a slight excess of dry methanol at room temperature with formation of a mixture of the diastereomeric β -phenylhydrazone methylphosphinates 3 (65% yield). Evolution of CH₃Cl was observed. The four expected diastereomers $\underline{3}$ can be isolated in pure form by silica gel chromatography (elution with benzene-ether (4:1) mixture). Tentative configurational assignment about the C=N bond has been determined essentially⁶ by proton NMR (see Table). The differences in the chemical shift of the NH proton and the methine proton resonance⁷ suggest that isomers 3I and 3II have the cis configuration defined as that in which the anilino and benzylic groups are on the same side of the C=N bond. To our knowledge this is the first case of separation and characterization of pure isomers about the C=N bond of hydrazones of phosphorus componds. A probable mechanism for this reaction involves the formation of the phosphorane such as 4; in the presence of HCl apical departure of the diaza group and nucleophilic attack of chloride on the activated carbon atom yields 3 with loss of CH3Cl. In the case of hydrolysis of 1 the hypothetical intermediate is 5.

Compound			SPOCH ₃	J _{POCH3}	\$ _{PCH}	J _{PCH}	S _{Arom} .	٤ _{nh}
<u>31</u>	Rf= 0,55 pf= 12	6 - 128• 3	,70(d)	10,5	5,03(d)	20,7	670-800(m)	11,05
<u>311</u>	Rf= 0,48 pf= 15	7 -159° 3	,75(d)	10,5	5,15(d)	22,2	650 - 780(m)	10,50
<u>3111</u>	Rf= 0,16 pf= 15	4 - 156° 3	,45(d)	10,5	4,25(d)	18,0	650-770(m)	Ъ
<u>3IV</u>	Rf= 0,10 pf= 11	9 - 121 3	, 49(d)	10,5	4,32(d)	21,7	630-760(m)	 b

TABLE - NMR Spectra^a of 3 in CDCl₃ Solution

^a Concentration of 3 to 5 mol % phenylhydrazone were used; Chemical shifts is parts per million from Me₄Si; J values in hertz; ^b Masked by aromatic protons

However a hydroxyl group is more apicophilic than methoxy group² and in our case it may be also more apicophilic than the diaza group. For this reason in our hydrolysis, ring-retention is favoured over ring-opening. In some reported^{2,5} cases both the hydroxyl and methoxyl groups are more apicophilic than the ring ligands favouring the ring-retention. On the contrary in other cases^{3,4} both the hydroxyl and methoxyl groups are less apicophilic than a ring ligand favouring the ring-opening.

Acknowledgments. - We wish to thank the Italian C.N.R. for financial support.

References

- 1. G. Baccolini and P.E. Todesco, J.Org.Chem., 1974, 39, 2650
- P. Gillespie, F. Ramirez, I. Ugi and D. Marquading, <u>Angew.Chem.Int.Ed.Eng.</u>, 1973, <u>12</u>, 91 and references cited therein
- 3. F. Ramirez, S. Glazer, P. Stern, I. Ugi and P. Lemmen, <u>Tetrahedron</u>, 1973, <u>29</u>, 3711
- 4. H. Mulliez, Tetrahedron Lett., 1974, 2351
- 5. R.S. Macomber, J.Org.Chem., 1971, 36, 2713
- 6. Each of the compounds <u>3</u> gave satisfactory elemental analysis. The assigned structures have been confirmed by IR and UV spectroscopy
- 7. G.J. Karabatsos and R.A. Taller, J.Am.Chem.Soc., 1963, 85, 3624